NEURAL MECHANISMS ONLINE
  • Home
  • News
  • WebinarSeries
    • WebinarSeries2021
    • WebinarSeries2020
    • WebinarSeries2019
    • WebinarSeries2018
  • (Web)Conferences
    • AISC-mid term 2019
  • How to connect
    • Troubleshooting
  • The team
  • Subscribe

10 January, Manolo MARTINEZ [WEBINAR]

12/30/2019

0 Comments

 

10 January 2020
15-17 Greenwhich Mean Time 

(check your local time here)

Manolo MARTINEZ

(University of Barcelona, Spain)

Information Theory is a Formal Theory of Representation

Join us online!
Picture
Ask for the paper!

​​Abstract

Information theory is a formal theory of representation. All signals in an information-processing pipeline are, in a minimal sense, representations. Core cases of representation are those for which, furthermore, a description in information-theoretic terms is particularly illuminating---that is, those that undergo substantial source- or channel-coding.
0 Comments

12 July, Beate KRICKEL & Matej KOHAR [WEBINAR]

7/4/2019

0 Comments

 

12 July 2019
15-17 - Greenwhich Mean Time 

(check your local time here)

Beate KRICKEL & Matej KOHAR

(Ruhr University Bochum)

Compare and Contrast:
​how to assess the completeness of mechanistic explanation 

Join us online!
Picture
Subscribe to NM!

Abstract

Opponents of the new mechanistic account of scientific explanation argue that the new mechanists are committed to a ‘More Details Are Better’ claim: adding details about the mechanism always improves an explanation. Due to this commitment, the mechanistic account cannot be descriptively adequate as actual scientific explanations usually leave out details about the mechanism. In reply to this objection, defenders of the new mechanistic account have highlighted that only adding relevant mechanistic details improves an explanation and that relevance is to be determined relative to the phenomenon-to-be-explained. Craver and Kaplan (2018) provide a thorough reply along these lines specifying that the phenomena at issue are contrasts. In this paper, we will discuss Craver and Kaplan’s reply. We will argue that it needs to be modified in order to avoid three problems, i.e., what we will call the Odd Ontology Problem, the Multiplication of Mechanisms Problem, and the Ontic Completeness Problem. However, even this modification is confronted with two challenges: First, it remains unclear how explanatory relevance is to be determined for contrastive explananda within the mechanistic framework. Second, it remains to be shown as to how the new mechanistic account can avoid what we will call the ‘Vertical More Details are Better’ objection. We will provide answers to both challenges.


0 Comments

28 June, Carlotta PAVESE [WEBINAR]

6/25/2019

1 Comment

 

Rescheduled on  20 December 
15-17 - Greenwhich Mean Time 

(check your local time here)

Carlotta PAVESE

(Cornell University)

The Psychological Reality of Practical Representation

Join us online!
Picture
Ask for the paper!

Abstract

We represent the world in a variety of ways: through percepts, concepts, propositional attitudes, words, numerals, recordings, musical scores, photographs, diagrams, mimetic paintings, etc. Some of these representations are mental. It is customary for philosophers to distinguish two main kinds of mental representations: perceptual representation (e.g., vision, auditory, tactile) and conceptual representation. This essay presupposes a version of this dichotomy and explores the way in which a further kind of representation – procedural representation – represents. It is argued that, in some important respects, procedural representations represent differently from both purely conceptual representations and purely perceptual representations. Although procedural  representations, just like conceptual and perceptual representations, involve modes of presentation, their modes of presentation are distinctively practical, in a sense which I will clarify. It is argued that an understanding of this sort of practical representation has important consequences for the debate on the nature of know-how.
1 Comment

14 June, Dan WEISKOPF [WEBINAR]

6/6/2019

1 Comment

 

14 June 2019

exceptionally at h 14-16 - Greenwhich Mean Time 

(check your local time here)

Dan WEISKOPF

(Georgia State University)

Data Mining the Brain to Decode the Mind

Join us online!
Picture
Ask for the paper!

Abstract

In recent years, neuroscience has begun to transform itself into a “big data” enterprise with the importation of computational and statistical techniques from machine learning and informatics. In addition to their technological applications (e.g., brain-computer interfaces and early diagnosis of neuropathology), these techniques promise to advance new solutions to longstanding theoretical quandaries. Here I critically assess whether these promises will pay off, focusing on the application of multivariate pattern analysis (MVPA) to the problem of reverse inference. I argue that MVPA does not inherently provide a new answer to classical worries about reverse inference, and that the method faces pervasive interpretive problems of its own. Further, the epistemic setting of MVPA and other “decoding” methods contributes to a potentially worrisome shift towards prediction and away from explanation in fundamental neuroscience.
1 Comment

31 May, Abel WAJNERMAN PAZ [WEBINAR]

5/28/2019

0 Comments

 

31 May 2019
h 15-17 - Greenwhich Mean Time
 

(check your local time here)

Abel WAJNERMAN PAZ

(University of Buenos Aires)

The Global Neuronal Workspace as an efficient broadcasting network

Join us online!
Picture
Ask for the paper!

Abstract

I propose a possible development of the Global Neuronal Workspace (GNW) model of access consciousness. Its initial motivation is that the model does not offer a clear distinction between the neural signatures associated with information broadcasting (which is the main function of the GNW) and those of other processes also related to consciousness, such as information integration. I suggest that a theoretically interesting and neurally plausible signature of broadcasting can be provided by using the graph-theoretic approach to information dissemination in communication networks. The theoretical appeal of this framework lies in the fact that, in addition to distinguishing between broadcasting and other relevant communication processes, it can possibly also contribute to identifying the GNW mechanism. I suggest that the approach can provide precise predictions regarding the communication algorithms and wiring diagram that the GNW would implement if it were an efficient broadcasting network.
0 Comments
<<Previous
Forward>>
Proudly powered by Weebly
  • Home
  • News
  • WebinarSeries
    • WebinarSeries2021
    • WebinarSeries2020
    • WebinarSeries2019
    • WebinarSeries2018
  • (Web)Conferences
    • AISC-mid term 2019
  • How to connect
    • Troubleshooting
  • The team
  • Subscribe